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Abstract. The motion of an interface in a random medium is studied by a stochastic 
differential equation, with terms corresponding to an external driving held, interface 
elasticity, and a (quenched) random background field. For driving fields F smaller than 
B threshold field Fe the interface is pinned, i.e. the velocity U = 0. F, and U are calculated 
within a discretized mean held theory. For F clme to the threshold field we find that U 
grows linearly with F - F,. Simulations of the mean field equations arc in agreement with 
the analytical results. 

Spin models in random fields are good representations of many impure materials. For 
example strongly anisotropic diluted antiferromagnets in a ui.iform field can be 
described by the random field Ising model [l, 21. When these systems are quenched 
to low temperatures, they can be either in a stable long-range ordered state or in a 
metastable microdomain configuration, depending on the cooling conditions. The 
domain structure relaxes slowly, if at all, towards equilibrium, because of pinning of 
domain walls to random fields ( R F ~ )  or random bonds [2-41. Experimentally,the 
relaxation process was investigated by measuring the magnetization [2]. For large 
domains in Ising-like models a part of a domain wall can be regarded as a planar 
interface because its curvature is small. Overhangs are neglected, so that the position 
of the interface is given by a single-valued function u(x, f), where x is a D-dimensional 
position vector parallel to the interface. We want to investigate the slow motion of the 
interface driven by a constant field F. Treating the interface as an elastic membrane, 
one can write down the following equation of motion [3 ,5,6]  

& / a t =  F+fV*u+g?(x,u) (1) 

where f is the interface stiffness, q(x, U )  is the local random field to be taken at the 
position of the interface, and g is a coupling constant. (In random bond systems 
~ ( x ,  U) is the derivative SV/Su of a random potential V ( x ,  U )  with a short range 
correlation.) The RF variables q are independently distributed in space with zero mean. 
As an example one can choose a Gaussian distribution. For sufficiently large g the 
interface will become rough. Equation (1) may have a broader significance: Koplik 
and Levine introduced it to describe immiscible-fluid displacement in random media, 
as occurs when water is forced by a pressure gradient into an oil filled porous medium 
(e.g. sandstone rock) [SI. Recently, Kessler, Levine and Tu [7] simulated (1) to explain 
fluid displacement experiments in porous media of Rubio et al [8]. A similar equation 
has been proposed to describe impurity pinning of sliding charge-density waves (cDw~), 
[9] in which case the noise term gq(x, U )  in (1) is replaced by h ( x )  sin[u(x, t ) - p ( x ) ] ,  
where U is a phase, h ( x )  is a random amplitude and p(x) is a random phase. 
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We are interested in the mean velocity U =‘d(u)/dr of the interface, where (. . .) 
denotes the average over x. In the thermodynamic limit and for f +a U is expected to 
be a time independent constant. We will consider the case T = 0 (7- is the temperature), 
for which there is a sharp transition from a pinned interface ( u = O )  to a moving 
interface ( u > O )  at a threshold field F,. (For T>O and F<F, one observes a very 
slow motion with a creep velocity calculated in [4].) The velocity U can be calculated 
by perturbation theory for weak disorder and F>>F, [5 ,6 ] .  Here, the depinning 
behaviour Fa Fc will be investigated, which can he considered as a dynamic critical 
phenomenon [9]. We expect u-(F-F, ) ’  near the threshold field F,. It is the aim of 
the present letter to calculate v and F, in a mean field model with an appropriate 
discretized geometry. For small F, and U analytical results are obtained, which are in 
agreement with simulations of the mean field equation. The velocity U grows linearly 
with F-F,, i.e. 0=1. 

Let us consider a discretized version of (1) with a three-state RF distribution q = 0, 
-tl. The shortest interval in u-direction, over which the RF is constant, is denoted by 
a. The transverse coordinates x are considered as lying on a lattice with spacing ail 
(figure 1). A cell is assigned the value q = +l (or -1) with a probability q / 2 ,  and q = 0 
with a probability 1 - q. First the case q = 1 will he considered. We call a cell with 
q =+1 (-1) a ‘plus-cell’ (‘minus-cell’). For the part of the interface which is in one 
cell we use the term ‘interface element’. 

The velocity can he obtained by averaging (1): 

U = F + g ( d x ,  U)) (2) 

i.e. the problem consists in computing ( ~ ( x ,  U)), which in general depends itself on U. 
When computing the average over x in (2) (see figure 1) the value of (q(x,  U)) will 
depend on the probabilities p+ to find an interface element on a plus- or minus-cell. 
!n genera!, 9- > p+ and (?(q U)) < 0; This is because the interface tends to spend more 
time on R F ~  with negative 7 than on positive R F ~ .  For large U the interface at each R F  

will advance quite smoothly and the times f , ,  which the interface elements spend on 
plus- or minus-cells, are almost independent of the sign of q. Thus, p +  “ p - ,  ( q ( x ,  U))+ 0 
and U +  F. As F is lowered towards F,, the motion of the interface will become more 
and more jerky and p -  > p + ,  U + 0. 

Figure 1. The discretized model. Cells in a given column are arranged an top oi  each other 
but the relative position in u-direction of different columns is assumed to be random. The 
+ signs refer to the sign of RF-vaIues ~ ( x ,  U). Cells with 7 = O  are not drawn. All cells 
have a fixed width a,, and a fixed height a. 
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Next the mean field theory will be described. The discretized Laplacian is given 
by ( ? / a i )  Zz-, [ u ( x + a l l e i ,  t ) -  u(x, t ) ] .  The mean field approximation consists in 
replacing the Laplacian in (1) by y [ ( u ) ( f ) - u ( x ,  t ) ]  with y = 2 D j / a ; :  

Ju /a f  = F +  y ( ( u ) -  u ) + g q ( x ,  U ) .  (3) 
The mean field theory should be a good approximation for interfaces with bounded 
fluctuations and high dimensions D or long-range interactions. This kind of replacement 
was introduced by Koplik and Levine for equation (1) [ 5 ]  and by Fisher for CDWI [9], 
where for the latter the exponent e was found to be equal to i. Computer simulations 
of the equation of motion for C D W ~  with the discretized Laplacian give 0 = 0.95 10.05 
for D = 2  and 0=1.16*0.04 for D = 3  [ I O ] .  (Note that for CDWS D is the dimension 
of the full space.) 

Since all interface positions u(x, I)  are only coupled to a 'mean field ( u ) ( t ) ,  (3) 
can be regarded as independent of x, and one can reformulate the problem as follows. 
We consider the motion on a line with RFE of a single particle (interface element) 
which is coupled by a spring to a second particle ((U)) which moves at a constant 
velocity v to be determined self-consistently. The average over x can be replaced by  
an average over the time t. Denoting by (1,) the mean value of the times t, averaged 
over a long run, the probabilities p* are proportional to ( t * ) .  In order to compute the 
times ( f * )  we consider the motion of an interface element through one cell and solve 
the equation of motion (3) for plus- and minus-cells separately: with the initial 
conditions f = 0, U( t = 0)  = 0,  ( U ) (  f = 0) = u' the solution is 

and (u ) ( t )=ut+uO.  The times f ( u  = a )  = tt vary from cell to cell because the initial 
value of the distance uo between the interface element U and the average interface ( U )  

can be different, whereas the parameters F, *g,  y, a, and U are equal for all cells. 
Therefore we have to average over the distribution w(uo) to obtain ( t i ) .  For sufficiently 
large y and a there exists a time interval f, 2 t >> l / y  for which one can neglect the 
exponential term in (4). Then, independent of U', 

U = u t + ( l  -e-") [uo+ ( F * g  - u ) / y ]  (4) 

( u ) ( f  = fd - a = ( u -  Fr  g ) / y  ( 5 )  
which is U' for the next cell. Therefore the distribution w ( u o )  is just a sum of two 
delta-functions, depending on the sign of q of the previous cell. When an interface 
element is leaving a cell, there are four possible situations; as an example we demon- 
strate the case when an interface element on a plus-cell attempts to move into a 
minus-cell. Here, the distance U' is given by the upper sign of the RHS of (5). For 
small fields F the interface element first stays at the boundary between the two cells 
as long as F - g +  y (u )<O (equation ( 3 ) ) .  It will be dragged into the second cell when 
the moving average interface reaches ( U )  = (g - F ) / y ,  which is the 'new' U". The time, 
which the average interface ( U )  needs to move from the 'old' U' (equation (5)) to the 
'new' U', is called waiting time t o = ( 2 g - u ) / ( y u ) .  From (4) one obtains f?+)= 

( a  + u / y ) / u ,  where the sign in parentheses refers to the sign of the previous cell. During 
the waiting time to the value of q = qo is not well defined, but we know that the velocity 
oftheinterfaceelementisequaltozero.Thus,wesubtractO= po[F+gqo+ y( ( (u) -  u ) ~ ) ]  
from the RHS of (2), which takes the form 

= ( P + + P - ) F + ( p + - p - ) g - y P o ( ( ( u ) - u ) o )  (6) 
where ( ( U ) - U ) ~  is taken during the waiting time to, p o ~ ( f o )  andp++p-+p,= 1. In a 
similar way as described above one obtains = ti+) = a/  u and fl? = ( a  - 2g/ y ) / v .  
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Inserting all possible I, in yt, >> 1, we see that the neglection of the exponential term 
in equation (4) is justified for ay >> U +  2g. To calculate the probabilities p+ and pa one 
has to average 1, and to over the two signs of the previous cell. Equation (6) becomes 
a quadratic equation for U [ 111. The generalization of the calculation to the case q < 1 
is straiehtfonvard and as the result we obtain 

with Q = [ 2 - q + 2 n / q ] / [ 2 - 3 q / 2 ]  and n = ( o y ) / g .  The threshold field is 

F , = q g 2 / ( 2 o y ) = g q / ( 2 n ) .  (8) 
For [(F-FJ/FJ[l-;q]<< Q2 equation (7) can be written as 

Thus the exponent e is equal to one. 
We have carried out computer simulations of the discretized mean field equation 

(3) for small fields F,< F < g  to check equation (7) (figures 2, 3). The mean position 

o n= 5 L= 7000 
+ n= 5 L=30000 
D "=lo L= 1000 
* n=10 L=30000 

Figure 2. Velocity of the interface versus driving field: simulation of (3) and the resulting 
(7) (full curves) for q = 1 .  The statistical uncertainties are smaller than the size of the 
symbols. 

Figure 3. Velocity versus driving field: simulation of (3)  and the resulting (7)  (full curves) 
forq<1. 
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( u ) ( t )  is obtained by solving (3) numerically for L interface elements at the same time 
(see figure 1). For both cases q = 1 (figure 2) and q < 1 (figure 3) the numerical data 
are in agreement with the analytical result: for n = 5 the measured velocities u ( F )  
coincide with (7) within 0.7%, whereas for q = 1, n = 10 (20) the deviations are smaller 
than 0.4% (0.2%) except for F very close to F, when the fluctuations of U become 
comparable to U itself. Similar to the effect of the random term ~ ( x ,  U )  the fluctuations 
of U lower the effective velocity. Since'the fluctuations are due to finite size effects we 
can diminish the deviations for F very close to F, by enlarging L (figures 2,3). As 
expected, the deviations increase with decreasing n. For n = 2 they reach a few per cent 
and for n = 1, (7) is certainly not valid. 

To summarize, we have studied an equation of motion for an interface in a random 
medium with a discretized mean field theory. For small U and F, the parameter of the 
equation of motion enter the results (7) and (8) in a simple way and the onset of the 
motion is linear. The analytical results are supported by a simulation of the mean field 
equation. 

I wish to thank T Nattermann for introducing me into the problem and L H  Tang for 
very helpful discussions and a critical reading of the manuscript. This work was 
supported by a DFG grant through SFB 166. 
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